<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 22 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
SHAN Zhiguang, WEI Tao, YANG Yang. Image Compression with Visual Entropy-Based Segmentation[J]. Chinese Journal of Engineering, 2000, 22(2): 185-189. doi: 10.13374/j.issn1001-053x.2000.02.025
Citation: SHAN Zhiguang, WEI Tao, YANG Yang. Image Compression with Visual Entropy-Based Segmentation[J]. Chinese Journal of Engineering, 2000, 22(2): 185-189. doi: 10.13374/j.issn1001-053x.2000.02.025

Image Compression with Visual Entropy-Based Segmentation

doi: 10.13374/j.issn1001-053x.2000.02.025
  • Received Date: 1999-09-10
    Available Online: 2021-08-27
  • An image compression method with Visual Entropy-Based segmentation is presented. Firstly the induction of the characteristics of Human Vision System(HVS) and the principles for Visual Entropy-based segmentation is made. Then the mathematic definition for quantification of image character and the algorithm for Visual Entropy-Based segmentation are fully described. The experimental results have shown that image compression with Visual Entropy-Based segmentation can not only gets a rather low bit rate but also gives satisfactory subjective perceptual quality. This method has well emulated the properties of HVS.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (278) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品