<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 21 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Zhen Qiang, Li Wenchao. Comparison of Application on Designing o'-Sialon-BN Composite by Neural Networks and Traditional Pattern Recognition[J]. Chinese Journal of Engineering, 1999, 21(2): 171-174. doi: 10.13374/j.issn1001-053x.1999.02.049
Citation: Zhen Qiang, Li Wenchao. Comparison of Application on Designing o'-Sialon-BN Composite by Neural Networks and Traditional Pattern Recognition[J]. Chinese Journal of Engineering, 1999, 21(2): 171-174. doi: 10.13374/j.issn1001-053x.1999.02.049

Comparison of Application on Designing o'-Sialon-BN Composite by Neural Networks and Traditional Pattern Recognition

doi: 10.13374/j.issn1001-053x.1999.02.049
  • Received Date: 1998-01-16
    Available Online: 2021-08-27
  • The Principle and the characteristic of the Neural NetWorks and the Traditional Pattern Recognition are introduced and compared. A forecast module for phases and performances of o'-Sialon-BN composite has been made with acquired experiment data by modified Neural Networks.Then the technical condition for synthesizing o'-Sialon-BN composite has been investigated.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (301) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品