<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 15 Issue 6
Oct.  2021
Turn off MathJax
Article Contents
Luo Fei, Yu Datai, Sun Yikang. Learning Hybrid Position/Force Control and Its Application[J]. Chinese Journal of Engineering, 1993, 15(6): 605-609. doi: 10.13374/j.issn1001-053x.1993.06.012
Citation: Luo Fei, Yu Datai, Sun Yikang. Learning Hybrid Position/Force Control and Its Application[J]. Chinese Journal of Engineering, 1993, 15(6): 605-609. doi: 10.13374/j.issn1001-053x.1993.06.012

Learning Hybrid Position/Force Control and Its Application

doi: 10.13374/j.issn1001-053x.1993.06.012
  • Received Date: 1993-09-18
    Available Online: 2021-10-18
  • This paper combines the robot position/force hybrid control algorithm proposed by Raibert and Craig and the robot dynamic hybrid control algorithm proposed by Yoshikawa. Taking account of the difficulty to identify the environment, especially the effect of mechanical disturbance, and the vibrations of mechanism, a PI learning hybrid control algorithm for using robot to do assembly task was presented. This algorithm was realized in a peg insertion by a three DOF robot. The experiment results showed that this algorithm could effectly realize the peg-and-hole task, and restrain and weaken the vibrations of mechanism.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (245) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品