<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 32 Issue 11
Aug.  2021
Turn off MathJax
Article Contents
YAO Feng, YANG Wei-dong, ZHANG Ming. Multi-objective load distribution of hot strip mills based on multi-swarm and sub-objective differential evolution[J]. Chinese Journal of Engineering, 2010, 32(11): 1506-1512. doi: 10.13374/j.issn1001-053x.2010.11.023
Citation: YAO Feng, YANG Wei-dong, ZHANG Ming. Multi-objective load distribution of hot strip mills based on multi-swarm and sub-objective differential evolution[J]. Chinese Journal of Engineering, 2010, 32(11): 1506-1512. doi: 10.13374/j.issn1001-053x.2010.11.023

Multi-objective load distribution of hot strip mills based on multi-swarm and sub-objective differential evolution

doi: 10.13374/j.issn1001-053x.2010.11.023
  • Received Date: 2009-12-07
  • A differential evolution algorithm based on multi-swarm and sub-objective optimization is presented in order to solve the difficulty in selecting the weighting coefficients in processing the objective function of hot strip mills.Each sub-swarm optimizes a sub-objective and evolves independently.This not only solves the issue of weighting coefficients,but also increases the convergence speed and accuracy.Finally,the algorithm's effectiveness is verified by simulation.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (187) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品