<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 29 Issue S2
Aug.  2021
Turn off MathJax
Article Contents
HAN Tian, SUN Xin, YIN Zhongjun. Motor condition recognition based on multi-agent decision fusion[J]. Chinese Journal of Engineering, 2007, 29(S2): 182-186. doi: 10.13374/j.issn1001-053x.2007.s2.096
Citation: HAN Tian, SUN Xin, YIN Zhongjun. Motor condition recognition based on multi-agent decision fusion[J]. Chinese Journal of Engineering, 2007, 29(S2): 182-186. doi: 10.13374/j.issn1001-053x.2007.s2.096

Motor condition recognition based on multi-agent decision fusion

doi: 10.13374/j.issn1001-053x.2007.s2.096
  • Received Date: 2007-10-15
    Available Online: 2021-08-16
  • One motor condition recognition system based on multi-agent decision fusion was proposed.Six classifiers were used to classify motors condition by system inputs:vibration and current signals.In the system,each classifier was considered as an agent,which independently completed recognition task,then exchanged information among classifiers to improve classification accuracy.Sensor fusion and classifier selection were put into the system,and this method was much better than one-single signal and no classifier selection.The best recognition result of the proposed system achieved 98.9%.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (190) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品