<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 22 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
XIE Tiejun, CHENG Tao, LIU Renping. Structure of Optimal Solution for E/T Scheduling[J]. Chinese Journal of Engineering, 2000, 22(3): 284-288. doi: 10.13374/j.issn1001-053x.2000.03.026
Citation: XIE Tiejun, CHENG Tao, LIU Renping. Structure of Optimal Solution for E/T Scheduling[J]. Chinese Journal of Engineering, 2000, 22(3): 284-288. doi: 10.13374/j.issn1001-053x.2000.03.026

Structure of Optimal Solution for E/T Scheduling

doi: 10.13374/j.issn1001-053x.2000.03.026
  • Received Date: 1999-10-21
    Available Online: 2021-08-27
  • A kind of E/T scheduling problem with four penalty factor is discussed in order to determine the optimal sequences and optimal common due date. A method about how to determine common due date is presented, the concept of combinative penalty factor is proposed, and the structure of optimal solution is discussed.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (397) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品