<listing id="b1vrb"><cite id="b1vrb"></cite></listing>
<var id="b1vrb"></var>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<var id="b1vrb"></var>
<var id="b1vrb"><video id="b1vrb"><thead id="b1vrb"></thead></video></var>
<var id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></var>
<cite id="b1vrb"></cite>
<ins id="b1vrb"><span id="b1vrb"></span></ins>
<thead id="b1vrb"></thead><menuitem id="b1vrb"></menuitem>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"></var>
<var id="b1vrb"><strike id="b1vrb"></strike></var>
<cite id="b1vrb"><strike id="b1vrb"><listing id="b1vrb"></listing></strike></cite>
<cite id="b1vrb"><video id="b1vrb"></video></cite>
Volume 14 Issue 4
Oct.  2021
Turn off MathJax
Article Contents
Li Mingchu, Li Zhongxiang. Hamilton Cycles in the Graphs of Ore-Type-(1)[J]. Chinese Journal of Engineering, 1992, 14(4): 483-489. doi: 10.13374/j.issn1001-053x.1992.04.031
Citation: Li Mingchu, Li Zhongxiang. Hamilton Cycles in the Graphs of Ore-Type-(1)[J]. Chinese Journal of Engineering, 1992, 14(4): 483-489. doi: 10.13374/j.issn1001-053x.1992.04.031

Hamilton Cycles in the Graphs of Ore-Type-(1)

doi: 10.13374/j.issn1001-053x.1992.04.031
  • Received Date: 1991-08-29
    Available Online: 2021-10-16
  • It was proved by S. Win in 1982 that if the sum of the degree of nonadjacent vertices of a simple graph G of order 2n is at least 2n + 1, then G has a Hamilton cycle and a 1-factor which are edge-disjoint. In this paper, it is proved that, under almost the same condition as Win's theorem, G has at least two Hamilton cycles and a 1-factor which are edge-disjoint.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (241) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    青青草原综合久久大伊人精品